SUBJECT: MATHEMATICS

SEMESTER-IV

PAPER-I, UNIT – I: DIFFERENTIAL EQUATIONS, DR. JITENDRA AWASTHI

DEPARTMENT OF MATHEMATICS

S. J. N. M. P. G. COLLEGE, LUCKNOW

METHOD OF REDUCTION:

(Whose one solution of complementary function is known)

If y = u is given solution belonging to the complementary function of the differential equation.

Let the other solution be y = v. Then y = u. v is complete solution of the differential equation.

Let $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + Qy = R$ (1) be the differential equation and u is the complementary function of (1)

$$\frac{d^2u}{dx^2} + p\frac{du}{dx} + Qu = 0 \qquad ...(2)$$

$$y = u. \ v \text{ so that } \frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$$

$$\frac{d^2y}{dx^2} = v\frac{d^2u}{dx^2} + 2\frac{dv}{dx}\frac{du}{dx} + u\frac{d^2y}{dx^2}$$

Substituting the values of y, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ in (1), we get

$$v\frac{d^{2}u}{dx^{2}} + 2\frac{dv}{dx}\frac{du}{dx} + u\frac{d^{2}v}{dx^{2}} + P\left(v\frac{du}{dx} + u\frac{dv}{dx}\right) + Qu.v = R$$

On arranging

$$\Rightarrow v \left[\frac{d^2 u}{dx^2} + P \frac{du}{dx} + Qu \right] + u \left[\frac{d^2 v}{dx^2} + P \frac{dv}{dx} \right] + 2 \frac{du}{dx} \cdot \frac{dv}{dx} = R$$

The first bracket is zero by virtue of relation (2), and the remaining is divided by u.

$$\frac{d^2v}{dx^2} + P\frac{dv}{dx} + \frac{2}{u}\frac{du}{dx}\frac{dv}{dx} = \frac{R}{u}$$

$$\Rightarrow \frac{d^2v}{dx^2} + \left[P + \frac{2}{u}\frac{du}{dx}\right]\frac{dv}{dx} = \frac{R}{u}$$
Let
$$\frac{dv}{dx} = z, \text{ so that } \frac{d^2v}{dx^2} = \frac{dz}{dx}$$

Equation (3) becomes

$$\frac{dz}{dx} + \left[P + \frac{2}{u}\frac{du}{dx}\right]z = \frac{R}{u}$$

This is the linear differential equation of first order and can be solved (z can be found), which will contain one constant.

On integration $z = \frac{dv}{dx}$, we can get v.

Having found v, the solution is y = uv.

Ques. Solve $y''-4xy'+(4x^2-2)y=0$ given that $y=e^{x^2}$ is an integral included in the complementary function.

Sol. Here, we have $y''-4xy'+(4x^2-2)y=0$

On putting $y = v.e^{x^2}$ in (1), the reduced equations is

$$\frac{d^2v}{dx^2} + \left[P + \frac{2}{u}\frac{du}{dx}\right]\frac{dv}{dx} = 0 \qquad [P = -4x, Q = 4x^2 - 2, R = 0]$$

$$\Rightarrow \frac{d^2v}{dx^2} + \left[-4x + \frac{2}{e^{x^2}}(2xe^{x^2})\right]\frac{dv}{dx} = 0$$

$$\Rightarrow \frac{d^2v}{dx^2} + [-4x + 4x]\frac{dv}{dx} = 0 \qquad \Rightarrow \qquad \frac{d^2v}{dx^2} = 0 \Rightarrow \frac{dv}{dx} = c_1 \Rightarrow v = c_1x + c_2$$

$$\therefore \qquad y = uv \qquad [u = e^{x^2}]$$

$$\Rightarrow v = e^{x^2}(c_1x + c_2) \qquad \text{Ans.}$$

Ques. Solve $x^2y''-(x^2+2x)y'+(x+2)y=x^3e^x$ given that y=x is one solution.

Sol. Here, we have $x^2y''-(x^2+2x)y'+(x+2)y = x^3e^x$

$$\Rightarrow y'' - \frac{x^2 + 2x}{x^2} y' + \frac{x + 2}{x^2} y = x e^x \qquad ...(1)$$

On putting y = vx in (1), the reduced equation is

$$\frac{d^2v}{dx^2} + \left\{P + \frac{2}{u}\frac{du}{dx}\right\}\frac{dv}{dx} = \frac{R}{u}$$

$$\frac{d^2v}{dx^2} + \left[-\frac{x^2 + 2x}{x^2} + \frac{2}{x}(1)\right]\frac{dv}{dx} = \frac{xe^x}{x}$$

$$\Rightarrow \frac{d^2v}{dx^2} - \frac{dv}{dx} = e^x \Rightarrow \frac{dz}{dx} - z = e^x \qquad \left(\because z = \frac{dv}{dx}\right)$$

which is a linear differential equation

Its solution is
$$ze^{x} = \int e^{x} dx + c$$

$$\Rightarrow ze^{-x} = x + c \Rightarrow z = e^{x} \cdot x + ce^{x}$$

$$\Rightarrow \frac{dv}{dx} = e^{x} \cdot x + ce^{x}$$

$$\Rightarrow v = x \cdot e^{x} + ce^{x} + c_{1}$$

$$\Rightarrow v = (x - 1)e^{x} + ce^{x} + c_{1}$$

Ans.

Ques. Solve
$$x \frac{d^2 y}{dx^2} - (2x-1) \frac{dy}{dx} + (x-1)y = 0$$

Given that $y = e^x$ is an integral included in the complementary function.

 $y = vx = (x^2 - x + cx)e^x + c_1x$

Sol. Here, we have
$$x \frac{d^2 y}{dx^2} - (2x-1) \frac{dy}{dx} + (x-1)y = 0$$

$$\Rightarrow \frac{d^2 y}{dx^2} - \frac{2x-1}{x} \frac{dy}{dx} + \frac{x-1}{x} y = 0 \qquad ...(1)$$

By putting $y = ve^x$ in (1), we get the reduced equation as

$$\frac{d^2v}{dx^2} + \left[P + \frac{2}{u} \frac{du}{dx} \right] \frac{dv}{dx} = 0 \qquad ...(2)$$

Putting $u = e^x$ and $\frac{dv}{dx} = z$ in (2), we get

$$\frac{dz}{dx} + \left[-\frac{2x-1}{x} + \frac{2}{e^x} e^x \right] z = 0$$

$$\Rightarrow \frac{dz}{dx} + \frac{-2x - 1 + 2x}{x}z = 0 \Rightarrow \frac{dz}{dx} + \frac{z}{x} = 0$$

$$\Rightarrow \frac{dz}{z} = \frac{dx}{x} \Rightarrow \log z = -\log x + \log c$$

$$\Rightarrow z = \frac{c_1}{x} \Rightarrow \frac{dv}{dx} = \frac{c_1}{x} \Rightarrow dv = c_1 \frac{dx}{x} \Rightarrow c_1 \log x + c_2$$

$$y = u. \ v = e^x (c_1 \log x + c_2)$$

RULE TO FIND OUT PART OF THE COMPLEMENTARY FUNCTION

Rule	Condition	Part of Complementary Function $= u$
1	1 + P + Q = 0	e^x
2	1 - P + Q = 0	e^{-x}
3	$1 + \frac{P}{a} + \frac{Q}{a^2} = 0$	e^{ax}
4	P + Qx = 0	x
5	$2 + 2Px + Qx^2 = 0$	x^2
6	$n(n-1) + Pnx + Qx^2 = 0$	x ⁿ

Ques. Solve
$$x^2 \frac{d^2 y}{dx^2} - 2x[1+x] \frac{dy}{dx} + 2(1+x)y = x^3$$

Sol.
$$x^{2} \frac{d^{2}y}{dx^{2}} - 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^{3}$$

$$\Rightarrow \frac{d^2y}{dx^2} - \frac{2x(1+x)}{x^2} \frac{dy}{dx} + \frac{2(1+x)y}{x^2} = x$$

$$P + Qx = -\frac{2x(1+x)}{x^2} + \frac{2(1+x)}{x^2}x = 0$$

Hence y = x is a solution of the C.F. and the other solution is v.

Putting y = vx in (1), we get the reduced equation as

$$\frac{d^2v}{dx^2} + \left\{ P + \frac{2}{u} \frac{du}{dx} \right\} \frac{dv}{dx} = \frac{x}{u}$$

$$\frac{d^2v}{dx^2} + \left[\frac{-2x(1+x)}{x^2} + \frac{2}{x}(1) \right] \frac{dv}{dx} = \frac{x}{x}$$

$$\Rightarrow \frac{d^2v}{dx^2} - 2\frac{dv}{dx} = 1 \Rightarrow \frac{dz}{dx} - 2z = 1 \qquad \left[\frac{dv}{dx} = z \right]$$

Which is a linear differential equation of first order and $I.F. = e^{\int -2dx} = e^{-2x}$

Its solution is
$$z e^{-2x} = \int e^{-2x} dx + c_1$$

$$\Rightarrow z e^{-2x} = \frac{e^{-2x}}{-2} + c_1 \Rightarrow z = \frac{-1}{2} + c_1 e^{2x}$$

$$\Rightarrow \frac{dv}{dx} = -\frac{1}{2} + c_1 e^{2x} \Rightarrow dv = \left(-\frac{1}{2} + c_1 e^{2x}\right) dx$$

$$\Rightarrow v = \frac{-x}{2} + \frac{c_1}{2} e^{2x} + c_2$$

$$y = uv = x \left(\frac{-x}{2} + \frac{c_1}{2} e^{2x} + c_2\right)$$
Ans.

Method of reduction of order:

Method 1. To Find the Complete Solution of y'' + Py' + Qy = R when part of Complementary Function is known (Method of reduction of order)

Let y = u be a part of the complementary function of the given differential equation

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R \qquad \dots (1)$$

Where u is a function of x. Then, we have

$$\frac{d^2u}{dx^2} + P\frac{du}{dx} + Qu = 0 \qquad \dots (2)$$

Let y = uv be the complete solution of equation (1), where v is a function of x.

Differentiating y w.r.t. x,

$$\frac{dy}{dx} = u \frac{dv}{dx} + \frac{du}{dx}.v$$

Again,

$$\frac{d^2y}{dx^2} = u\frac{d^2v}{dx^2} + 2\frac{du}{dx} \cdot \frac{du}{dx} + v\frac{d^2u}{dx^2}$$

Substituting the values of y, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in equation (1) we get

$$u\frac{d^2v}{dx^2} + 2\frac{du}{dx}\frac{dv}{dx} + v\frac{d^2u}{dx^2} + P\left(u\frac{dv}{dx} + v\frac{du}{dx}\right) + Q(uv) = R$$

$$\Rightarrow u \frac{d^2v}{dx^2} + \left(2\frac{du}{dx} + Pu\right)\frac{dv}{dx} + \left(\frac{d^2u}{dx^2} + P\frac{du}{dx} + Qu\right)v = R$$

$$\Rightarrow u \frac{d^2v}{dx^2} + \left(2\frac{du}{dx} + Pu\right)\frac{dv}{dx} = R$$
 Using (2)

$$\Rightarrow \frac{d^2v}{dx^2} + \left(\frac{2}{u}\frac{du}{dx} + P\right)\frac{dv}{dx} = \frac{R}{u} \qquad \dots (3)$$

Put $\frac{dv}{dx} = p$ then, $\frac{d^2v}{dx^2} = \frac{dp}{dx}$

Now (3) becomes,
$$\frac{dp}{dx} + \left(\frac{2}{u}\frac{du}{dx} + P\right)p = \frac{R}{u}$$
(4)

Equation (4) is a linear differential equation of I order in p and x.

$$I.F. = e^{\int \left(\frac{2 du}{u dx} + p\right) dx} = e^{\left(\int \frac{2}{u} du + \int P dx\right)} = u^2 e^{\int P dx}$$

Solution of (4) is given by

$$pu^2 e^{\int Pdx} = \int \frac{R}{u} u^2 e^{\int Pdx} dx + c_1$$

Where c_1 is an arbitrary constant of integration.

$$\Rightarrow \qquad p = \frac{1}{u^2} e^{-\int P dx} \left[\int R u \, e^{\int P dx} dx + c_1 \right]$$

$$\frac{dv}{dx} = \frac{1}{u^2} e^{-\int P dx} \left[\int Ru \, e^{\int P dx} dx + c_1 \right]$$

Integration yields,
$$v = \int \frac{1}{u^2} e^{-\int P dx} \left[\int Ru \, e^{\int P dx} dx + c_1 \right] dx + c_2$$

Where c_2 is an arbitrary constant of integration.

Hence the complete solution of (1) is given by,

$$y = uv$$

$$\Rightarrow \qquad y = u \int \frac{1}{u^2} e^{-\int p \, dx} \left[\int Ru \, e^{\int p \, dx} dx + c_1 \right] dx + c_2 u$$

To find out the part of C.F. of the linear differential equation of II order given by

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R.$$

Remember:

Sr. No.	Condition	Part of C.F.
1.	$1 + \frac{P}{a} + \frac{Q}{a^2} = 0$	e^{ax}
2.	1 + P + Q = 0	e^{X}
3.	1 - P + Q = 0	e^{-x}
4.	$m(m-1) + P mx + Qx^2 = 0$	x^{m}
5.	P + Qx = 0	х
6.	$2 + 2Px + Qx^2 = 0$	x^2

Ques. Solve:

$$\frac{d^2y}{dx^2} - \cot x \frac{dy}{dx} - (1 - \cot x)y = e^x \sin x.$$

Sol. Comparing with the standard form, we get

$$P = -\cot x, Q = -(1 - \cot x), R = e^{x} \sin x$$
$$1 + P + Q = 1 - 1 + \cot x - \cot x = 0$$

 \therefore A part of $C.F. = e^{x}$

Let $y = ve^{x}$ be the complete solution of given equation, then

$$\frac{dy}{dx} = v e^{x} + e^{x} \frac{dv}{dx}$$

$$\frac{d^2y}{dx^2} = ve^x + 2e^x \frac{dv}{dx} + e^x \frac{d^2v}{dx^2}$$

Substituting for y, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in given equation, we get

$$\frac{d^2v}{dx^2} + (2 - \cot x)\frac{dv}{dx} = \sin x$$

$$\Rightarrow \frac{dp}{dx} + (2 - \cot x) p = \sin x \qquad ...(1) \text{ where } p = \frac{dv}{dx}.$$

This is a linear differential equation of I order in p and x.

$$I.F. = e^{\int (2-\cot x)dx} = \frac{e^{2x}}{\sin x}$$

Solution of (1) is,
$$p \frac{e^{2x}}{\sin x} = \int \sin x \cdot \frac{e^{2x}}{\sin x} dx + c_1 = \frac{e^{2x}}{2} + c_1$$

Where c_1 is an arbitrary constant of integration.

$$p = \frac{1}{2}\sin x + c_1 e^{-2x}\sin x$$

$$\frac{dv}{dx} = \frac{1}{2}\sin x + c_1 e^{-2x}\sin x$$

Integrating, we get
$$v = -\frac{1}{2}\cos x - \frac{1}{5}c_1e^{-2x}(\cos x + 2\sin x) + c_2$$

Hence the complete solution is given by,

$$y = ve^{x} = \left[-\frac{1}{2}\cos x - \frac{1}{5}c_{1}e^{-2x}(\cos x + 2\sin x) + c_{2} \right]e^{x}.$$

Reduced to Normal Form (Removal of first derivative)

Method 2. To Find the Complete Solution of y'' + Py' + Qy = R when it is reduced to Normal Form (Removal of first derivative)

When the part of C.F. cannot be determined by the previous method, we reduce the given differential equation in **normal form** by eliminating the term in which there exists first derivative of the dependent variable.

$$\frac{d^2y}{dx^2}P\frac{dy}{dx} + Qy = R \qquad \dots (1)$$

Let y = uv be the complete solution of eqn. (1), where u and v are the function of x.

$$\therefore \frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx}$$

and

$$\frac{d^2y}{dx^2} = v\frac{d^2u}{dx^2} + 2\frac{du}{dx}\frac{dv}{dx} + u\frac{d^2v}{dx^2}$$

Substituting the value of y, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ in eqn. (1), we get

$$\frac{d^2v}{dx^2} + \left(\frac{2}{u}\frac{du}{dx} + P\right)\frac{du}{dx} + v\left(\frac{1}{u}\frac{d^2u}{dx^2} + \frac{P}{u}\frac{du}{dx} + Q\right) = \frac{R}{u} \qquad \dots (2)$$

Let us choose
$$u$$
 such that $\frac{2}{u}\frac{du}{dx} + P = 0$...(3)

which on solving gives,

$$u = e^{-\int \frac{P}{2} dx} \qquad \dots (4)$$

From (3), $\frac{du}{dx} = -\frac{Pu}{2}$

Differentiating, we get
$$\frac{d^2u}{dx^2} = -\frac{1}{2} \left[P\left(\frac{du}{dx}\right) + \frac{dP}{dx}(u) \right]$$

$$= -\frac{1}{2} \left[P \left(\frac{-Pu}{2} \right) + u \frac{dP}{dx} \right] = \frac{P^2 u}{2} - \frac{u}{2} \frac{dP}{dx}$$

Coefficient of
$$v = \frac{1}{u} \frac{d^2 u}{dx^2} + \frac{P}{u} \frac{du}{dx} + Q = \frac{1}{u} \left[\frac{P^2 u}{4} - \frac{u}{2} \frac{dP}{dx} \right] + \frac{P}{u} \left(\frac{-Pu}{2} \right) + Q$$

$$=Q - \frac{1}{2} \frac{dP}{dx} - \frac{P^2}{4} = I \text{ (say)}$$

Then (2) becomes,
$$\frac{d^2v}{dx^2} + Iv = S \qquad \dots (5)$$

This is known as the normal form of equation (1).

Solving (5), we get v in terms of x. Ultimately, y = uv is the complete solution.

Ques. Solve:
$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$$
.

Sol. Here,
$$P = -4x$$
, $Q = 4x^2 - 1$, $R = -3e^{x^2} \sin 2x$

Let y = uv be the complete solution.

Now,
$$u = e^{-\frac{1}{2}\int (-4x)dx} = e^{x^2}$$

$$I = Q - \frac{1}{2}\frac{dP}{dx} - \frac{P^2}{4} = 4x^2 - 1\frac{1}{2}(-4) - \frac{1}{4}(16x^2) = 1.$$
Also,
$$S = \frac{R}{u} = \frac{-3e^{x^2}\sin 2x}{e^{x^2}} = -3\sin 2x$$

Hence normal form is,

$$\frac{d^2v}{dx^2} + v = -3\sin 2x$$

Auxiliary equation is

$$m^2 + 1 = 0 \implies m = \pm i$$

$$C.F. = c_1 \cos x + c_2 \sin x$$

where c_1 and c_2 are arbitrary constants of integration.

$$P.I. = \frac{1}{D^2 + 1}(-3\sin 2x) = \frac{-3}{(-4+1)}\sin 2x = \sin 2x$$

 $\therefore \qquad \text{Solution is,} \quad v = c_1 \cos x + c_2 \sin x + \sin 2x$

Hence the complete solution of given differential equation is

$$y = uv = e^{x^2} (c_1 \cos x + c_2 \sin x + \sin 2x).$$

Changing the Independent Variable

Method 3. To Find the Complete Solution of y'' + Py' + Qy = R by changing the Independent Variable

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R \qquad \dots (1)$$

Let us relate x and z by the relation,

$$z = f(x) \tag{2}$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} \qquad \dots (3)$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{dy}{dz} \cdot \frac{dz}{dx} \right)$$

$$= \frac{dy}{dz} \cdot \frac{d^2z}{dx^2} + \frac{dz}{dx} \cdot \frac{d}{dz} \left(\frac{dy}{dz}\right) \cdot \frac{dz}{dx} = \frac{dy}{dz} \cdot \frac{d^2z}{dx^2} + \left(\frac{dz}{dz}\right)^2 \frac{d^2y}{dx^2} \qquad \dots (4)$$

Substituting in (1), we get

 \Rightarrow

$$\frac{dy}{dz} \cdot \frac{d^2z}{dx^2} + \left(\frac{dz}{dx}\right)^2 \frac{d^2y}{dx^2} + P \frac{dy}{dz} \cdot \frac{dz}{dx} + Qy = R$$

$$\frac{d^2y}{dz^2} + P_1 \frac{dy}{dz} + Q_1 y = R_1 \qquad \dots (5)$$

where
$$P_1 = \frac{\frac{d^2z}{dx^2} + P\frac{dz}{dx}}{\left(\frac{dz}{dx}\right)^2}$$
, $Q_1 = \frac{Q}{\left(\frac{dz}{dx}\right)^2}$, $R_1 = \frac{R}{\left(\frac{dz}{dx}\right)^2}$

Here P_1 , Q_1 , R_1 are functions of x which can be transformed into functions of z using the relation z = f(x).

Choose z such that $Q_1 = \text{constant} = a^2 \text{ (say)}$

$$\Rightarrow \frac{Q}{\left(\frac{dz}{dx}\right)^2}a^2 \Rightarrow a\frac{dz}{dx} = \sqrt{Q}$$

$$\Rightarrow dz = \frac{\sqrt{Q}}{a} dx$$

Integration yields,
$$z = \int \frac{\sqrt{Q}}{a} dx$$

If this value of z makes P_1 as constant then equation (5) can be solved.

Ques. Solve:
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x)$$
.

Sol.
$$\frac{d^2y}{dx^2} + \frac{1}{1+x}\frac{dy}{dx} + \frac{y}{(1+x)^2} = \frac{4}{(1+x)^2}\cos\log(1+x) \qquad \dots (1)$$

Choose z such that,

$$\left(\frac{dz}{dx}\right)^2 = \frac{1}{\left(1+x\right)^2}$$

$$\Rightarrow \frac{dz}{dx} = \frac{1}{1+x} \qquad \dots (2)$$

Integration yields,
$$z = \log(1+x)$$
 ...(3)

From (2),
$$\frac{d^2z}{dx^2} = -\frac{1}{(1+x)^2}$$

$$P_{1} = \frac{-\frac{1}{(1+x)^{2}} + \frac{1}{1+x} \cdot \frac{1}{1+x}}{\frac{1}{(1+x)^{2}}} = 0$$

$$Q_1 = \frac{Q}{\left(\frac{dz}{dx}\right)^2} = 1$$

$$R_{1} = \frac{R}{\left(\frac{dz}{dx}\right)^{2}} = 4\cos\log(1+x) = 4\cos z$$
 (Form (3))

Reduced equation is

$$\frac{d^2y}{dz^2} + y = 4\cos z$$

Auxiliary equation is $m^2 + 1 = 0$

 $\Rightarrow m = \pm i$

$$C.F. = c_1 \cos z + c_2 \sin z$$

$$P.I. = \frac{1}{D^2 + 1} (4\cos z) = 4.\frac{z}{2}\sin z = 2z \sin z$$

Complete solution is

$$y = c_1 \cos z + c_2 \sin z + 2z \sin z$$

$$y = c_1 \cos\log(1+x) + c_2 \sin\log(1+x) + 2\log(1+x) \sin\log(1+x)$$
.

Method of Variation of Parameters

Method4. To Find the Complete Solution of y''+Py'+Qy=R by the Method of Variation of Parameters

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R \qquad \dots (1)$$

Let the complementary function of (1) be

 \therefore u and v are part of C.F.

and

$$\frac{d^2v}{dx^2} + P\frac{dv}{dx} + Qv = 0 \qquad \dots (4)$$

Let the complete solution of (1) be

$$y = Au + Bv \qquad \dots (5)$$

where A and B are not constants but suitable functions of x to be so chosen that (5) satisfies (1). Now,

$$y_{1} = Au_{1} + Bv_{1} + A_{1}u + B_{1}v$$

$$\Rightarrow \qquad y_{1} = Au_{1} + Bv_{1} + (A_{1}u + B_{1}v) \qquad \dots (6)$$

Let us choose A and B such that

$$A_1 u + B_1 v = 0 \qquad \qquad \dots (7)$$

Now (6) becomes,
$$y_1 = Au_1 + Bv_1$$
 ...(8)

$$y_2 = A_1 u_1 + A u_2 + B_1 v_1 + B v_2 \qquad ...(9)$$

Substituting the values of y, y_1, y_2 from (5), (8) and (9) in (1) respectively, we get

$$(A_1u_1 + Au_2 + B_1v_1 + Bv_2) + P(Au_1 + Bv_1) + Q(Au + Bv) = R$$

$$\Rightarrow$$
 $A_1u_1 + B_1v_1 + A(u_2 + Pu_2 + Qu) + B(v_2 + Pv_1 + Qv) = R$

$$\Rightarrow A_1 u_1 + B_1 v_1 = R \qquad \dots (10) \qquad \text{(Using (3) and (4))}$$

Solving (7) and (10) for A_1 and B_1 , we get

$$A_1u + B_1v = 0$$

$$A_1 u_1 + B_1 v_1 - R = 0$$

$$\Rightarrow \frac{A_1}{-Rv} = \frac{B_1}{Ru} = \frac{1}{uv_1 - u_1v}$$

$$\Rightarrow A_1 = \frac{-Rv}{uv_1 - u_1 v} = \phi(x)$$
 (say) ...(11)

$$B_1 = \frac{Ru}{uv_1 - u_1v} = \psi(x)$$
 (say) ...(12)

Integrating (11), we get
$$A = \int \phi(x)dx + a$$
 ...(13)

Where a is an arbitrary constant of integration.

Integrating (12), we get
$$B = \int \psi(x)dx + b$$
 ...(14)

where b is also an arbitrary constant of integration.

Putting the above values in (5), we get

$$y = \left[\int \phi(x) \, dx + a \, \right] u + \left[\int \psi(x) \, dx + b \, \right] v$$

$$\Rightarrow \qquad y = u \int \phi(x) \, dx + v \int \psi(x) \, dx + au + bv$$

This gives the complete solution of (1).

Ques. Solve by the method of variation of parameters:

$$\frac{d^2y}{dx^2} + a^2y = \sec ax.$$

Sol. Here, $u = \cos ax$, $v = \sin ax$ are two parts of C.F.

Also, $R = \sec ax$.

Let the complete solution be

$$y = A\cos ax + B\sin ax$$

where A and B are suitable functions of x.

To determine the values of A and B, we have

$$A = \int \frac{-Rv}{uv_1 - u_1 v} dx + c_1$$

$$= \int \frac{-\sec ax \cdot \sin ax}{\{\cos ax \cdot a\cos ax - (-a\sin ax)\sin ax\}} dx + c_1$$

$$= -\int \frac{\tan ax}{a} dx + c_1$$

$$A = \frac{1}{a^2} \log \cos ax + c_1$$

where c_1 is an arbitrary constant of integration.

$$B = \int \frac{Ru}{uv_1 - u_1 v} dx + c_2$$

$$= \int \frac{\sec ax \cdot \cos ax}{\{\cos ax \cdot a \cos ax - (-a \sin ax) \sin ax\}} dx + c_2$$

$$= \frac{1}{a} \int dx + c_2 = \frac{x}{a} + c_2$$

where c_2 is an arbitrary constant of integration.

Hence the complete solution is given by

$$y = A\cos ax + B\sin ax$$

$$= \left(\frac{\log\cos ax}{a^2} + c_1\right)\cos ax + \left(\frac{x}{a} + c_2\right)\sin ax$$

Ques. Solve by method of variation of parameters:

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}\log x.$$

Sol. Parts of C.F. are $u = e^{-x}$, $v = xe^{-x}$ and $R = e^{-x} \log x$

Let $y = Ae^{-x} + Bxe^{-x}$ be the complete solution where A and B are some suitable functions o x. To determine A and B, we have

$$A = -\int \frac{Rv}{uv_1 - u_1 v} dx + c_1 = -\int \frac{e^{-x} \log x \cdot x e^{-x}}{e^{-x} (e^{-x} - x e^{-x}) + x e^{-2x}} dx + c_1$$

$$= -\int x \log x \, dx + c_1 = -\frac{x^2}{2} \log x + \frac{x^2}{4} + c_1$$

$$B = \int \frac{Ru}{uv_1 - u_1 v} dx + c_2 = \int \frac{e^{-x} \log x \cdot e^{-x}}{e^{-2x}} dx + c_2$$

$$= \int \log x \, dx + c_2 = x \log x - x + c_2$$

Hence the complete solution is

$$y = Ae^{-x} + Bxe^{-x}$$

$$= \left(-\frac{x^2}{2}\log x + \frac{x^2}{4} + c_1\right)e^{-x} + (x\log x - x + c_2)xe^{-x}$$

Ques. Using variation of parameters method, solve:

$$x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} - 12y = x^{3} \log x.$$

Sol. Consider the equation

$$x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 12y = 0$$
 for finding parts of C.F.

Put $x = e^z$ so that $x = \log x$ and Let $D = \frac{d}{dz}$ then the given equation reduces to

$$[D(D-1)+2D-12]y=0$$

$$\Rightarrow \qquad (D^2 + D - 12) y = 0$$

Auxiliary equation is

$$m^2 + m - 12 = 0$$
 \Rightarrow $m = 3, -4$
 $C.F. = c_1 e^{3z} + c_2 e^{-4z} = c_1 x^3 + c_2 x^{-4}$

Hence, parts of C.F. are x^3 and x^{-4}

Let y = Au + Bv be the complete solution, where A and B are some suitable functions of x. A and B are determined as follows:

$$A = -\int \frac{Rv}{uv_1 - u_1 v} dx + c_1 = -\int \frac{x \log x \cdot x^{-4}}{x^3 \cdot (-4x^{-5}) - 3x^2 \cdot (x^{-4})} dx + c_1$$

$$= -\int \frac{x^{-3} \log x}{-7x^{-2}} dx + c_1 = \frac{1}{7} \int \frac{\log x}{x} dx + c_1 = \frac{1}{14} (\log x)^2 + c_1$$
and
$$B = \int \frac{Ru}{uv_1 - u_1 v} dx + c_2 = \int \frac{x \log x \cdot x^3}{-7x^{-2}} dx + c_2$$

$$= -\frac{1}{7} \int x^6 \log x dx + c_2 = -\frac{1}{7} \left[\log x \cdot \frac{x^7}{7} - \int \frac{1}{x} \cdot \frac{x^7}{7} dx \right] + c_2$$

$$= -\frac{1}{7} \left[\frac{x^7 \log x}{7} - \frac{1}{7} \left(\frac{x^7}{7} \right) \right] + c_2 = \frac{x^7}{49} \left(\frac{1}{7} - \log x \right) + c_2$$

Hence the complete solution is given by

$$y = Ax^3 + Bx^{-4} = \left[\frac{1}{14}(\log x)^2 + c_1\right]x^3 + \left[\frac{x^7}{49}\left(\frac{1}{7} - \log x\right) + c_2\right]x^{-4}$$